3.54 \(\int \frac {a+b \cot (c+d x)}{(e \cot (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=229 \[ \frac {(a+b) \log \left (\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}+\sqrt {e}\right )}{2 \sqrt {2} d e^{3/2}}-\frac {(a+b) \log \left (\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}+\sqrt {e}\right )}{2 \sqrt {2} d e^{3/2}}-\frac {(a-b) \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d e^{3/2}}+\frac {(a-b) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} d e^{3/2}}+\frac {2 a}{d e \sqrt {e \cot (c+d x)}} \]

[Out]

-1/2*(a-b)*arctan(1-2^(1/2)*(e*cot(d*x+c))^(1/2)/e^(1/2))/d/e^(3/2)*2^(1/2)+1/2*(a-b)*arctan(1+2^(1/2)*(e*cot(
d*x+c))^(1/2)/e^(1/2))/d/e^(3/2)*2^(1/2)+1/4*(a+b)*ln(e^(1/2)+cot(d*x+c)*e^(1/2)-2^(1/2)*(e*cot(d*x+c))^(1/2))
/d/e^(3/2)*2^(1/2)-1/4*(a+b)*ln(e^(1/2)+cot(d*x+c)*e^(1/2)+2^(1/2)*(e*cot(d*x+c))^(1/2))/d/e^(3/2)*2^(1/2)+2*a
/d/e/(e*cot(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.19, antiderivative size = 229, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 8, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {3529, 3534, 1168, 1162, 617, 204, 1165, 628} \[ \frac {(a+b) \log \left (\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}+\sqrt {e}\right )}{2 \sqrt {2} d e^{3/2}}-\frac {(a+b) \log \left (\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}+\sqrt {e}\right )}{2 \sqrt {2} d e^{3/2}}-\frac {(a-b) \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d e^{3/2}}+\frac {(a-b) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} d e^{3/2}}+\frac {2 a}{d e \sqrt {e \cot (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Cot[c + d*x])/(e*Cot[c + d*x])^(3/2),x]

[Out]

-(((a - b)*ArcTan[1 - (Sqrt[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]])/(Sqrt[2]*d*e^(3/2))) + ((a - b)*ArcTan[1 + (Sqr
t[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]])/(Sqrt[2]*d*e^(3/2)) + (2*a)/(d*e*Sqrt[e*Cot[c + d*x]]) + ((a + b)*Log[Sqr
t[e] + Sqrt[e]*Cot[c + d*x] - Sqrt[2]*Sqrt[e*Cot[c + d*x]]])/(2*Sqrt[2]*d*e^(3/2)) - ((a + b)*Log[Sqrt[e] + Sq
rt[e]*Cot[c + d*x] + Sqrt[2]*Sqrt[e*Cot[c + d*x]]])/(2*Sqrt[2]*d*e^(3/2))

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 1168

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[-(a*c)]

Rule 3529

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((
b*c - a*d)*(a + b*Tan[e + f*x])^(m + 1))/(f*(m + 1)*(a^2 + b^2)), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e +
f*x])^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c
 - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1]

Rule 3534

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2/f, Subst[I
nt[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]

Rubi steps

\begin {align*} \int \frac {a+b \cot (c+d x)}{(e \cot (c+d x))^{3/2}} \, dx &=\frac {2 a}{d e \sqrt {e \cot (c+d x)}}+\frac {\int \frac {b e-a e \cot (c+d x)}{\sqrt {e \cot (c+d x)}} \, dx}{e^2}\\ &=\frac {2 a}{d e \sqrt {e \cot (c+d x)}}+\frac {2 \operatorname {Subst}\left (\int \frac {-b e^2+a e x^2}{e^2+x^4} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{d e^2}\\ &=\frac {2 a}{d e \sqrt {e \cot (c+d x)}}+\frac {(a-b) \operatorname {Subst}\left (\int \frac {e+x^2}{e^2+x^4} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{d e}-\frac {(a+b) \operatorname {Subst}\left (\int \frac {e-x^2}{e^2+x^4} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{d e}\\ &=\frac {2 a}{d e \sqrt {e \cot (c+d x)}}+\frac {(a+b) \operatorname {Subst}\left (\int \frac {\sqrt {2} \sqrt {e}+2 x}{-e-\sqrt {2} \sqrt {e} x-x^2} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} d e^{3/2}}+\frac {(a+b) \operatorname {Subst}\left (\int \frac {\sqrt {2} \sqrt {e}-2 x}{-e+\sqrt {2} \sqrt {e} x-x^2} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} d e^{3/2}}+\frac {(a-b) \operatorname {Subst}\left (\int \frac {1}{e-\sqrt {2} \sqrt {e} x+x^2} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{2 d e}+\frac {(a-b) \operatorname {Subst}\left (\int \frac {1}{e+\sqrt {2} \sqrt {e} x+x^2} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{2 d e}\\ &=\frac {2 a}{d e \sqrt {e \cot (c+d x)}}+\frac {(a+b) \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} d e^{3/2}}-\frac {(a+b) \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} d e^{3/2}}+\frac {(a-b) \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d e^{3/2}}-\frac {(a-b) \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d e^{3/2}}\\ &=-\frac {(a-b) \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d e^{3/2}}+\frac {(a-b) \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d e^{3/2}}+\frac {2 a}{d e \sqrt {e \cot (c+d x)}}+\frac {(a+b) \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} d e^{3/2}}-\frac {(a+b) \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} d e^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.36, size = 196, normalized size = 0.86 \[ \frac {3 a \left (2 \left (\sqrt {2} \tan ^{-1}\left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )-\sqrt {2} \tan ^{-1}\left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )\right )+8 \sqrt {\tan (c+d x)}+\sqrt {2} \log \left (\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1\right )-\sqrt {2} \log \left (\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1\right )\right )+8 b \tan ^{\frac {3}{2}}(c+d x) \, _2F_1\left (\frac {3}{4},1;\frac {7}{4};-\tan ^2(c+d x)\right )}{12 d \tan ^{\frac {3}{2}}(c+d x) (e \cot (c+d x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Cot[c + d*x])/(e*Cot[c + d*x])^(3/2),x]

[Out]

(3*a*(2*(Sqrt[2]*ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]] - Sqrt[2]*ArcTan[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]]) + Sq
rt[2]*Log[1 - Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]] - Sqrt[2]*Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c
+ d*x]] + 8*Sqrt[Tan[c + d*x]]) + 8*b*Hypergeometric2F1[3/4, 1, 7/4, -Tan[c + d*x]^2]*Tan[c + d*x]^(3/2))/(12*
d*(e*Cot[c + d*x])^(3/2)*Tan[c + d*x]^(3/2))

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cot(d*x+c))/(e*cot(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {b \cot \left (d x + c\right ) + a}{\left (e \cot \left (d x + c\right )\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cot(d*x+c))/(e*cot(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((b*cot(d*x + c) + a)/(e*cot(d*x + c))^(3/2), x)

________________________________________________________________________________________

maple [A]  time = 0.37, size = 355, normalized size = 1.55 \[ -\frac {b \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )}{4 d \,e^{2}}-\frac {b \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )}{2 d \,e^{2}}+\frac {b \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )}{2 d \,e^{2}}+\frac {a \sqrt {2}\, \ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )}{4 d e \left (e^{2}\right )^{\frac {1}{4}}}+\frac {a \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )}{2 d e \left (e^{2}\right )^{\frac {1}{4}}}-\frac {a \sqrt {2}\, \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )}{2 d e \left (e^{2}\right )^{\frac {1}{4}}}+\frac {2 a}{d e \sqrt {e \cot \left (d x +c \right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cot(d*x+c))/(e*cot(d*x+c))^(3/2),x)

[Out]

-1/4/d/e^2*b*(e^2)^(1/4)*2^(1/2)*ln((e*cot(d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot
(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))-1/2/d/e^2*b*(e^2)^(1/4)*2^(1/2)*arctan(2^(1/2)/
(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)+1/2/d/e^2*b*(e^2)^(1/4)*2^(1/2)*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))
^(1/2)+1)+1/4*a/d/e*2^(1/2)/(e^2)^(1/4)*ln((e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))
/(e*cot(d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))+1/2*a/d/e*2^(1/2)/(e^2)^(1/4)*arctan(2^(
1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)-1/2*a/d/e*2^(1/2)/(e^2)^(1/4)*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+
c))^(1/2)+1)+2*a/d/e/(e*cot(d*x+c))^(1/2)

________________________________________________________________________________________

maxima [A]  time = 0.69, size = 204, normalized size = 0.89 \[ \frac {e {\left (\frac {\frac {2 \, \sqrt {2} {\left (a - b\right )} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {e} + 2 \, \sqrt {\frac {e}{\tan \left (d x + c\right )}}\right )}}{2 \, \sqrt {e}}\right )}{\sqrt {e}} + \frac {2 \, \sqrt {2} {\left (a - b\right )} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {e} - 2 \, \sqrt {\frac {e}{\tan \left (d x + c\right )}}\right )}}{2 \, \sqrt {e}}\right )}{\sqrt {e}} - \frac {\sqrt {2} {\left (a + b\right )} \log \left (\sqrt {2} \sqrt {e} \sqrt {\frac {e}{\tan \left (d x + c\right )}} + e + \frac {e}{\tan \left (d x + c\right )}\right )}{\sqrt {e}} + \frac {\sqrt {2} {\left (a + b\right )} \log \left (-\sqrt {2} \sqrt {e} \sqrt {\frac {e}{\tan \left (d x + c\right )}} + e + \frac {e}{\tan \left (d x + c\right )}\right )}{\sqrt {e}}}{e^{2}} + \frac {8 \, a}{e^{2} \sqrt {\frac {e}{\tan \left (d x + c\right )}}}\right )}}{4 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cot(d*x+c))/(e*cot(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

1/4*e*((2*sqrt(2)*(a - b)*arctan(1/2*sqrt(2)*(sqrt(2)*sqrt(e) + 2*sqrt(e/tan(d*x + c)))/sqrt(e))/sqrt(e) + 2*s
qrt(2)*(a - b)*arctan(-1/2*sqrt(2)*(sqrt(2)*sqrt(e) - 2*sqrt(e/tan(d*x + c)))/sqrt(e))/sqrt(e) - sqrt(2)*(a +
b)*log(sqrt(2)*sqrt(e)*sqrt(e/tan(d*x + c)) + e + e/tan(d*x + c))/sqrt(e) + sqrt(2)*(a + b)*log(-sqrt(2)*sqrt(
e)*sqrt(e/tan(d*x + c)) + e + e/tan(d*x + c))/sqrt(e))/e^2 + 8*a/(e^2*sqrt(e/tan(d*x + c))))/d

________________________________________________________________________________________

mupad [B]  time = 0.80, size = 137, normalized size = 0.60 \[ \frac {2\,a}{d\,e\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}+\frac {{\left (-1\right )}^{1/4}\,a\,\mathrm {atan}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{\sqrt {e}}\right )}{d\,e^{3/2}}-\frac {{\left (-1\right )}^{1/4}\,a\,\mathrm {atanh}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{\sqrt {e}}\right )}{d\,e^{3/2}}+\frac {{\left (-1\right )}^{1/4}\,b\,\mathrm {atan}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{\sqrt {e}}\right )\,1{}\mathrm {i}}{d\,e^{3/2}}+\frac {{\left (-1\right )}^{1/4}\,b\,\mathrm {atanh}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{\sqrt {e}}\right )\,1{}\mathrm {i}}{d\,e^{3/2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*cot(c + d*x))/(e*cot(c + d*x))^(3/2),x)

[Out]

(2*a)/(d*e*(e*cot(c + d*x))^(1/2)) + ((-1)^(1/4)*a*atan(((-1)^(1/4)*(e*cot(c + d*x))^(1/2))/e^(1/2)))/(d*e^(3/
2)) - ((-1)^(1/4)*a*atanh(((-1)^(1/4)*(e*cot(c + d*x))^(1/2))/e^(1/2)))/(d*e^(3/2)) + ((-1)^(1/4)*b*atan(((-1)
^(1/4)*(e*cot(c + d*x))^(1/2))/e^(1/2))*1i)/(d*e^(3/2)) + ((-1)^(1/4)*b*atanh(((-1)^(1/4)*(e*cot(c + d*x))^(1/
2))/e^(1/2))*1i)/(d*e^(3/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {a + b \cot {\left (c + d x \right )}}{\left (e \cot {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cot(d*x+c))/(e*cot(d*x+c))**(3/2),x)

[Out]

Integral((a + b*cot(c + d*x))/(e*cot(c + d*x))**(3/2), x)

________________________________________________________________________________________